

DEPARTMENT OF MECHANICAL ENGINEERING

List of R-21 I & II sem Subjects

S.No	BoS Subjects from Department of Mechanical	Sem/Branch	Category
	ME Branch Subject	S	
1.	Engineering Drawing	I Sem ME	ES
2.	Engineering Workshop	II Sem ME	ES
3.	Material Science and Engineering	II Sem ME	ES
4.	Material Science and Engineering Lab	II Sem ME	ES
	Other Branch Subjects	5	
1.	Engineering Graphics	I Sem CE & CSE and II SemECE & EEE	ES
2.	Engineering and IT Workshop (Engineering Workshop Only)	I Sem EEE & ECE and II Sem CSE	ES
3.	Engineering Mechanics	II Sem CE	ES
4.	Engineering Workshop	II Sem CE	ES

DEPARTMENT OF MECHANICAL ENGINEERING

R-21 | & II sem Syllabus

				GINEERING (GUDUR		
				ERING DRAW				R2021
Semester		Hours / Week		Totalhrs.	Credits		Max Mark	
	L	Т	Р		C	CIE	SEE	TOTA
Ι	0	1	4	80	3	40	60	100
 To explore To convey To Constrict To gain k Course Ou CO 1	skills on u e various S v exact info uct Engine nowledge f nowledge f	cales in I prmation of ering Cur for conver t the end of ne qualitie	Engineer of any p ves by u sion of of the cou	ing practice hysical object of using general m isometric views urse, student will cision and accu	ethods s into ortho l be able to: racy in engi	graphic vie		1)
CO 2	Draw en	gineering	curves v	with different m	ethods (BL-	-3).		
CO 3	Develop	the orthog	graphic j	projection of po	ints, lines a	nd planes	(BL-3)	
CO 4	Construc	t Projectio	ons and s	ections of solids	. (BL-3)			
CO 5	Construc	t Isometri	c and P	erspective views	s (BL-3).			
			С	OURSE CONT	TENT			
ТА	SK – 1		In	troduction & C	onic section	ns		16 Hours
nstruments used limensioning me Geometrical con only. Conic Sections: Epicycloids and Scales: Reduced	ethods. structions: Types of c Hypocyclo	simple co onics: Elli id, Involut	nstructio pse, Par te	ons, construction abola and Hyper	n of Pentago rbola (Eccen	n, Hexagon	n by general hod only),. (method
Т	ASK -2		Ortho	graphic Projec	tions			16 Hours
Objectives and hird angle projections of population Projections of population wo reference pla	Principle o ction. oints: Proje caight lines	ction of po Fundam	on, Met oints pla ental co	hods of projection ced in different of ncepts, Line par	ons, Compar quadrants,		C C	e and
	TASK-3		Proie	ections of Solid	ls			16 Hours
Projections of p nclined to one an	lanes: Proje nd two refe	ence plan	lanes (T es place	riangle, Square, 1 in first quadraı	Pentagon, C	Circle) para	llel, perpend	
Types of solids: Projections of r	•				and Cone),	with its a	xis	

perpend	licular to one plane an	d parallel to another plane, Axis inclined to one plane and p	arallel to other
plane.			
	TASK-4	Sections of Solids and Development of Surfaces	16Hours
Section		sectional views of solids, cutting planes, Sections of Prism,	
	er and Cone	sectional views of solids, cutting planes, Sections of Frish,	, r yrannus,
•		evelopment of Surfaces of right regular Solids-Prism, Cylind	der
	d, Cone	evelopment of Surfaces of right regular Solids-Trisin, Cynix	,
j	TASK-5	Isometric and Orthographic Projections	16Hours
T			
		nciples, Isometric scale, Isometric views, Conventions, Is	sometric
		e solids (Prism, Pyramid, Cylinder & Cone),	
Conv	version of Isometric v	iews in to Orthographic views.	
		Total	hours: 80 hours
Text B	ook(s):		
1.		ntary Engineering Drawing", CharotarPublishers, 2014.	
2.		ineering Drawing, 2/e, Pearson Education,2009	
3.	K.L. Narayana & P.	Kannaiah, Engineering Drawing, 3/e, Scitech Publishers,	
	Chennai, 2012.		
4.	Engineering Drawing	g by Dr AVS Sridhar Kumar, Dr Krishnaiah, T P Vara Prasa	d. ,
	Spectrum education,	Sun techno Publications,2019	
Refere	nce Book(s):		
	1. Engineering Dra	wing and Graphic Technology-International Edition, Thoma	as E. French,
		k, Robert J. Foster, McGraw-Hill, 2014	
	2. K.Venugopal "E Delhi, 2010	Engineering Drawing and Graphics", New Age International	(P)Ltd., New

	NAF	RAYANA	ENGINE	ERING COLL	EGE:GUI	DUR		
		EN	GINEERI	NG WORK SI	HOP			R2021
Semester	Но	urs / Wee	k	Totalhrs	Credits	М	ax Marks	
	L	Т	Р		С	CIE	SEE	TOTAL
II	0	0	3	48	1.5	40	60	100
		COURS	E CONTE	NT (TRADES	FOR PRA	CTICE)		
				-1 Carpentry				
Familiarity with c of 300x40x25mn a) Half–Lap joi b) Mortise and '	n soft woo nt.	d stock.	ood sand too	ols used in woo	d working a	and make	following jo	pints from out
-,	J	-	Trac	le-2 Fitting (1	0 H)			
i.]Familiarity w M.S. stock a) V-fit b) Dov		nt types o	f tools used	in fitting and c	lo the fitting	g exercise	s out of 80	x 50 x 5 mm
		T	rade - 3 Sh	eet Metal Wo	rk (10 H)			
metal job from (a) Tapered tray		funnel	-	et ectrical House	Wining (0	H)		
Familiarities wi	th differer				0.		alactrical	connections
a) Two lamps in b) Two way swi c) Tube light d) Two lamps in	n series itch		plug and sv				gelectricar	connections
Familiarity with	different	types of t				ving weld	ing exercise	es
 Single V but Lap joint 	t joint			-		-	-	
DEMO EXPER 1. Plumbin 2. Two wh 3. Power T	ig, eeler tyre							

- Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of WorkshopTechnology"Vol-I2008&Vol-II2010MediaPromoters&Publishers Pvt.Limited, Mumbai.
- Kalpakjian S. and Steven S.Schmid, "Manufacturing Engineering and Technology" 4thEdition, Pearson Education IndiaEdition,2002.
- 3. P. Kannaiah &K. L. Narayana "Workshop manual" 2ndEd., Scitech publications Pvt.Ltd.,Hyderabad,2008.

Reference Book(s):

1. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", PearsonEducation2008.

				SCIENCE and				R2021	
Semester			s / Week	Total hrs	Credits		Marks		
	L	T	P	10	C	CIE	SEE	TOTA	
Π	3	0	0	48	3	40	60	100	
Course Obj	ectives:								
. To study st	ructure of 1	metals and	types of s	solids.					
•			• •	s and properties	of steel and i	ron			
. To learn ab		•	Ū.	s and properties	of steel and i	ion.			
				of ceramic mater of composite mat					
. TO study at	out proper	ties and s		or composite mat					
Course	Outcomes	: After su	ccessful co	ompletion of the	course, the st	udent will	be able to:		
CO 1	Define	onds cry	stallizatio	n of metals grai	n sizes of me	tals and			
		Define bonds, crystallization of metals ,grain sizes of metals and loys . (BL-1)							
CO 2	•	,	onstructio	n of equilibrium	diagrams an	d to study a	bout phase	_	
		liagrams.(*	C	•	•		
CO 3		· ·	ies and str	uctures of variou	is ferrous and	d non-ferrou	is metals ar	ıd	
	alloys.(Bl								
CO 4		-		atment of alloys					
CO 5	Find varie	ous ceram	ic materia	ls and composite	materials (BL-1)			
			(COURSE CON	TENT				
MODULE	-1			re of Metals			1	0 H	
Bonds in Sol	ids – Meta	allic bond	- crystalliz	zation of metals,	grain and gr	ain bounda	ries, effect	ofgrain	
			-	vs – determinatio	-	ze.			
onstitution o	f Alloys : 1	Necessity	of alloying	g, types of solid	solutions,				
MODULE	-2	Ec	quilibriun	nof Diagrams				10 H	
Experi	mental me	ethods of	construc	tion of equilib	rium diagra	ms, Isom	orphism a	lloy	
systems, equ	uilibrium o	cooling a	nd heatin	g of alloys, Le	ever rule, et	itectic syst	ems, perite	ctic	
	insformatio	ons in the	e solid sta	te – allotropy, o	eutectoid, pe	ritectoid re	actions, pl	nase	
ule.				1. 0 411					
MODUL		• Ctructur		ls & Alloys	Cast iron N	Calleghle Co		9 H	
Cost Irong			• ·				Ū.	•	
Cast Irons a	0 1		•						
ron, Spheric	on steels I		siccis, 11a	unciu manganes			.15. 1 \011-1\1	1005	
ron, Spheric of plain carbo		low alloy	,						
ron, Spheric of plain carbo Metals and	Alloys:	·		ovs Aluminium	and its allow	s Titanium:	and its allov	s	
ron, Spheric of plain carbo Metals and	Alloys:	·	and its all	oys, Aluminium treatment of Al	•	s, Titaniuma		s. 10 H	
ron, Spheric of plain carbo Metals and Structure and MODUL	Alloys: properties E-4	of copper	and its all Heat	•	loys		1	10 H	
ron, Spheric of plain carbo Metals and Structure and MODUL Effect of allog	Alloys: properties E-4 ying elemen	of copper	and its all Heat 1 – Iron car	treatment of A	lloys lealing, norm	alizing, Ha	dening, TT	10 H	
ron, Spheric of plain carbo Metals and Structure and MODUL Effect of allog	Alloys: properties E-4 ying elemen Harden abi	of copper	and its all Heat – Iron car ce - harder	treatment of All	lloys lealing, norm ge hardening	alizing, Ha	dening, TT	l 0 H Tdiagrams,	

- 1. Introduction to Physical Metallurgy / Sidney H.Avener. 2017
- 2. A Text of Essential of Materials science and engineering/ Donald R.Askeland/Thomson.2013
- 3. Material Science and Metallurgy/ Dr.V.D.Kodgire,2011

- 1. Science of Engineering Materials / B.K.Agarwal,2017.
- 2. Engineering materials and metallurgy/R. K. Rajput/S.Chand,2015.
- 3. Engineering Materials and Their Applications R. A Flinn and P K Trojan / Jaico Books 1995.

		NAI	RAYANA ENG	GINEERING (COLLEGE	: GUDUR	2	
		Mate	erial Science ar	nd Engineering	Lab			R2021
Semester		Hours /	Week	Totalhrs	Credits		Max Mar	rks
	L	Т	Р		С	CIE	SEE	TOTAL
II	0	0	2	32	1	40	60	100
			C	OURSE CONT	TENT			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 0		1 0	Task-1				
Stu	idy of g	general pro	ocedure for spe	ecimen preparat	ion and Meta	allurgical	Microscope.	
				Task -2				
	Prenar	ation and	study of the Mi	icro Structure of	f pure metal	s like Iron	Cu and Al	
	Перша	ation and	study of the Wi	Task -3	i pure metal	3 HKC H OH		
		Prepa	aration and stud	ly of the Micros	tructure of N	Mild steels		
				Task -4				
		Prenara	tion and study of	of the Microstru	icture of low	v carbon st	وم]	
		Trepuru	tion and study (	Task -5				
		Preparat	ion and study o	f the Microstru	cture of high	carbon st	مماد	
		Перагас		TASK-6				
			Study of 1	microstructures	of Cast Iron			
				TASK-7				
	Stu	dy of mic	rostructures of	Nonferrous alle	oys, Alumin	u006D &	Copper.	
		2		TASK-8				
			Study of micro	ostructures of H	eat-treated s	teels.		
			Matalla anonk	TASK-9	alersia of De			
			Metanograph	nic study and an	alysis of Bra	ass		
		Ч	ardenability of	TASK-10 steel by Jominy	y and Ouanc	h Test		
		11	•			li Test.		
			Add	itional Experi	ments			
		<b>T' 1</b>		TASK-11	1 1 .	. 1 . 1		
		Find ou	it the hardness	of various treat	ed and untre	ated steels	3.	
		~ ~ ~		TASK-12		<b>D</b> 1		
		Study	of crystal stru	cture of BCC, F	CC and HC	P crystals	•	

- 1. Introduction to Physical Metallurgy / Sidney H.Avener. 2017
- 2. A Text of Essential of Materials science and engineering/ Donald R.Askeland/Thomson.2013
- 3. Material Science and Metallurgy/ Dr.V.D.Kodgire,2011

#### **Reference Book(s):**

1. Science of Engineering Materials/Agarwal

- 2. Engineering materials and metallurgy/R. K.Rajput/S.Chand.
- 3. Engineering Materials and Their Applications R. A Flinn and P K Trojan /Jaico Books

	NARAYANA ENGINEERING COLLEGE:GUDUR											
	ENGINEERING GRAPHICS LAB							R2021				
Semester	ŀ	Iours / Wee	k	Total	Credits		Max Mar	rks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
Ι	0	1	4	80	3	40	60	100				

**Pre-Requisite:** Basic Mathematics (Geometry)

#### **Course Objectives:**

- 1. To impart skills on using drawing instruments
- 2. To convey exact and complete information of any physical object.
- 3. To Construct Engineering Curves.
- 4. To Learn and practice basic AutoCAD commands.
- 5. To Instruct the utility of drafting & modelling packages in orthographic and isometric drawings

Course Ou	Course Outcomes: At the end of the course, student will be able to:					
CO 1	Define the qualities of precision and accuracy in engineering drawing. (BL-1)					
CO 2	Draw engineering curves with different methods(BL-3).					
CO 3	Develop the orthographic projection of points and straight lines(BL-3)					
CO 4	Construct the planes and simple solids.(BL-3).					
CO 5	Understand and practice basic AUTOCAD commands (BL-2)					

#### COURSE CONTENT

	Part-A Manual Drawing	
TASK-1	Introduction and Conic sections	10 Hours
Introduction to Engin	eering graphics: Principles of Engineering Graphics and their	significance;
various instruments us	ed, drawing sheet sizes and title block, lettering, BIS convent	ions, types of
lines and dimensioning	methods.	
Geometrical construction	ons: simple constructions, construction of Pentagon, Hexagon b	y general
Method only.		
Conic Sections:. Type	s of conics: Ellipse, Parabola and Hyperbola (Eccentricity me	ethod only),
TASK2	Orthographic Projections	10 Hours
<b>Objectives and Princi</b>	ple of projection, Methods of projections, Comparison betwee	een firstangle
and third angle project	ion.	
Projections of points:	Projection of points placed in different quadrants.	
Projection of straight	lines: Fundamental concepts, Line parallel, perpendicular and	inclined to
one and two reference	planes placed in first quadrant only.	
TASK-3	Projections of Solids	15 Hours
and inclined to one ar <b>Types of solids</b> ; Pol <b>Projections of regu</b>	<b>5:</b> Projection of planes (Triangle, Square, Pentagon, Circle) p ad two reference planes placed in first quadrant only. yhedra, Solids of revolution, <b>clar solids</b> (Prisms, Pyramids, Cylinders and Cone), with lane and parallel to other plane, Axis inclined to one plane and	its axis

other plane.

TASK-4	Isometric and Orthographic views	10Hours

Orthographic views.							
Part B Computer Aided Drafting							
TASK-5	Introduction to AutoCAD	17 Hours					
editing, moving, copy	diting commands: line, circle, rectangle, erase, view, undo, r ing, rotating, scaling, mirroring, layers, templates, polylines, trin ys, dimensions. Dimensioning principles and conventional represe	nming, extending,					
TASK-6	Orthographic and Isometric Projections	18 Hours					
Text Book(s):							
<ol> <li>Bhatt N.D. "E</li> <li>Shah and Rana</li> </ol>	Elementary Engineering Drawing", Charotar Publishers, 20 , Engineering Drawing, 2/e, Pearson Education, 2009	<b>hours: 80 hours</b>					
3. K.L.Narayana Chennai,20	& P.Kannaiah, Engineering Drawing, 3/e, Scitech Publishers, 012.						
<b>e e</b>	rawing by Dr AVS Sridhar Kumar, Dr. Krishnaiah, T P Vara Prasa education, Sun techno Publications, 2019	ad.					
<b>Reference Book(s):</b>	Drawing and Graphic Technology -International Edition, Thomas harles J. Vierck, Robert J. Foster, McGraw-Hill, 2014	5					

		ENGINEERING AND IT WORK SHOP PART – A ENGINEERING WORK SHOP							
	I	PART –	A ENG	NEERING	WORK S	НОР			
Semester	Ho	urs / Week		Total hrs	Credits	Max Marks			
	L	Т	Р		С	CIE	SEE	TOTAL	
II	0	0	4	64	2	40	60	100	
e-requisit	e: Basic mat	hematics.							
Course Ob	jectives:								
<ol> <li>To iden &amp; equip</li> <li>To know preparin</li> <li>To gain Present</li> <li>To learn Browsi</li> <li>Course CO 1 CO 2 CO 3</li> <li>CO 4</li> </ol>	w about the in ng a compute n knowledge ations n about Netwing andSearch Outcomes: Understand Apply tool Apply basi and check Understand computer r	d use variou nternal part er for use by about the orking of co ning After succe the safety s for makin c electrical of their function to disasser ready to use	s of a con y installin e usage omputers essful con aspects in ag models engineerin ionality.(1 mble and e (BL-2)	nputer, ass ng the oper of tools and use In npletion of using the in respect ng knowled BL-3) assemble	embling a cating syste like Word ternet facil f the cours tools and c tive trades lge to make a Personal	computer em l processo ity for e, the stu equipmen of engine e simple h Computer	r from the ors, Sprea ident wil ts. (BL-2 ering wo iouse wiri r and pre	e parts, adsheets, <u>l be able to:</u> ) rkshop.(BL-3 ng circuits pare the	
CO 5		wledge to In	nterconne	ct two or	more comp	outers for	informat	ion sharing (l	
	3)	COURSE CO	ONTENT	' (TRADES	SEOR PRA	CTICE			
				Carpentr		CIICE)			
		es of woods	and tools	used in woo	d working a	and make	following	joints from ou	
300x40x25 Half–Lap		stock.			C				
300x40x25 Half–Lap	joint.	stock.		2 Fitting (8					

### Trade - 3 Sheet Metal Work (8 H)

Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from out of 22 or 20 guage G.I. sheet

a) Tapered tray b) Conical funnel

#### Trade - 4 Electrical House Wiring (8 H)

Familiarities with different types of basic electrical circuits and make the following electrical connections

a) Two lamps in series

b) Two way switch

c) Tube light

d) Two lamps in parallel with 3 pin plug and switches

#### Text Book(s):

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of Workshop Technology" Vol-I2008& Vol-II2010 Media Promoters & Publishers Pvt.Limited, Mumbai.
- Kalpakjian S. and Steven S.Schmid, "Manufacturing Engineering and Technology" 4thEdition, Pearson Education IndiaEdition,2002.
- 3. P. Kannaiah &K. L. Narayana "Workshop manual" 2nd Ed., Scitech publications
- 4. Pvt.Ltd., Hyderabad, 2008.

#### **Reference Book(s):**

1. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", PearsonEducation2008.

		NAR	AYANA	ENGINEERI	NG COLL	EGE: G	UDUR	
			ENGI	NEERING N	<b>AECHANI</b>	CS		R2021
Semester		Hours	/Week	Total	Credit		Max I	Marks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
II	3	1	0	48	4	40	60	100
Pre-requis	site: Different	tiation and	l integratio	n topics in ma	thematics.			
Course	Objectives:							
	-	he fundan	nentals of r	nechanics cor	ncent of for	ce and its	stypes	
				on equilibriun	-	ee und ne	rypes.	
				yzing differer		russes		
		-	-	anding the co	• •		ertia	
				of particle and				
			,	1	0.0	· •		
Cou	rse Outcome	s: After su	ccessful c	ompletion of	the course,	the stude	ent will be able	eto:
Com	pute the result	ltant of sy	stem of for	ces in plane a	ind space ac	ting on b	odies. (BL-3)	)
	•	•		ted with friction	•	0	· · · · ·	
		-					embers of var	ious
	Determine the support-reactions and analyze the internal forces of the members of various trusses and frames. (BL-4)							
Calculate the location of centroid of composite areas. (BL-4)								
Apply transfer theorems to determine properties of various sections. (BL-4)								
Trrr, and of the of the properties of various sections. (DD +)								
Solv	e problems re	lated to ki	netics. (Bl	L-3)				
				,				
				COURSE CO	NITENIT			
			(					
	MODULE -			System of				10 H
-			-	-				s of force systems
		-			-	-	-	, moment of a force
Varignon's	s theorem, con	ncept of fr	ee body di	agrams, conc	ept of equil	ibrium o	f coplanar for	ce systems.
	MODULE -	-2		Frictio	on			09 H
Definition	of Friction a	nd its app	lications, a	ungle of friction	on, angle of	repose, o	coefficient of	friction. Typesof
Friction, la	ws of static f	friction, D	escription	and application	on of frictio	on on blo	cks on horizoi	ntal and inclined
planes.								
	MODULE-	3	Δn	alysis of Trus	5665			09 H
Introducti				-		Ioints m	ethod of section	
coefficient	-	usses, ana	lysis of pic	the trusses by	method of a	Joints, III	lethod of section	
coefficient	. methou.							
	MODULE-	4	Centro	id & Momen	t of Inertia			10H
Definition	of Centroid &	& Centre o	f Gravity,	Axes of Sym	metry, Loca	ation of <b>C</b>	Centroid of Re	ctangle, Triangle,
Semicircle	e, Quadrant ar	nd sector o	of a circle l	by method of	integration.	Numeri	cal problems of	onCentroid of
Composite	e sections.							
Concept of	f Moment of	inertia, pe	rpendicula	r axis theorer	n, parallel a	axis theory	rem, and mom	ent of inertia
of Rectang	gular, Circular	r, Semiciro	cular, Quad	drant of a circ	le Triangula	ar section	is by method o	of integration.
Numerical	Problems on	moment	of inertia of	of composite s	section.			
	MOD	ULE-5	K	inematics &	Kinetics			10 H

Kinetics of rectilinear motion, Newton's laws of motion, D'Alembert's principle, Work-energymeth Impulse-momentum equation, Kinetics of circular motion, Rotation.	od,
Total 48	h

- 1. S.S. Bhavikatti, "Engineering Mechanics", 4th edition, New Age International, 2008.
- 2. R.K. Bansal, "A text book of Engineering Mechanics", LaxmiPublications, 2010

3. Irving Shames, GKM Rao, "Engineering Mechanics: Statics and Dynamics", 4thedition, Pearson, 2009.

- 1. Basudeb Bhattacharya., "Engineering Mechanics", 2ndedition, Oxford University Press (India), 2015.
- 2. K L Kumar, Veenu Kumar, "Engineering Mechanics", 4th edition, Tata McGraw-Hill, 2010.
- 3. Engineering Mechanics, R.S.Khurmi, S.Chand, 2012.

				G COLLEG				R2021
~	<b>XX</b> / <b>XX</b>			WORK S				112021
Semester	Hours / W	/eek		Fotalhrs	Credits	Max Mar	rks	
	L	Т	Р	-	С	CIE	SEE	TOTAL
	Ľ	1	1		C	CIL	DLL	TOTAL
II	0	0	3	48	1.5	40	60	100
	CC	OURSE CO	ONTENT (	<b>FRADES F</b>	FOR PRAC	TICE)		
		]	Frade -1 C	arpentry (1	10 H)			
Familiarity with diffe			nd tools used	d in wood w	orking and	make follo	wing joir	nts from outo
300x40x25mm soft	wood stock							
a) Half–Lap joint.	,							
b) Mortise and Ten	on joint							
			Trade-2	Fitting (10	H)			
i.]Familiarity with	different typ	bes of tools	used in fitti	ng and do tl	ne fitting ex	ercises out	t of 80 x :	50 x 5 mm
M.S. stock								
a) V-fit b) Dovetai	l fit							
		Trade	- 3 Sheet M	Ietal Work	(10 H)			
Familiarity with dif	ferent types	of tools us	ed in sheet	metal work	ing, Develo	pments of	following	g sheetmetal
job from out of 22	or 20 guage	e G.I. sheet						
a) Tapered tray b) C	Conical funr	nel						
		Trade	- 4 Electric	al House V	Viring (9 H	[)		
Familiarities with d	lifferent typ	es of basic	electrical ci	rcuits and r	nake the fol	lowing ele	ctrical co	nnections
a) Two lamps in ser						C C		
b) Two way switch								
<ul><li>c) Tube light</li><li>d) Two lamps in pa</li></ul>	rallal with	3 nin nlug g	nd switche	2				
d) I wo lamps in pa		5 pin piug a		S Welding (9	<b>) H</b> )			
				0.				
Familiarity with dif		of tools us	sed in weldi	ng and do t	he following	g welding o	exercises	
1. Single V butt jo	ınt							
2. Lap joint								
DEMO EXPERIM	ENTS:							
1. Plumbing								
2. Two whe	eeler tyre pur	icture						
1 11.1	∼1 11			t Book(s):	an D and C 12	"T1	f	
1. Hajra C	Choudhury	э.к., Hajra	Cnoudhury	/ A.K., N1rj	ar Koy S.K	. Element	IS OI	

- Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of WorkshopTechnology"Vol-I2008&Vol-II2010MediaPromoters&Publishers Pvt.Limited, Mumbai.
- 2. KalpakjianS. and StevenS.Schmid, "Manufacturing Engineering andTechnology" 4thEdition, Pearson Education IndiaEdition,2002.
- P. Kannaiah &K. L. Narayana "Workshop manual" 2ndEd., Scitech publications Pvt.Ltd.,Hyderabad,2008.

Reference Book(s): 1. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", Pearson Education2008.

# NARAYANA ENGINEERING COLLEGE::GUDUR

## **DEPARTMENT OF MECHANICAL ENGINEERING**

## List of R21 III & IV Sem Subjects

S.No	BoS Subjects from The Department of ME	Sem/Branch	Category
1.	Engineering Mechanics	III Sem ME	ES
2.	Thermodynamics	III Sem ME	ES
3.	Manufacturing Processes	III Sem ME	PC
4.	Fluid Mechanics &Hydraulic Machines	III Sem ME	РС
5.	Computer Aided Drafting and Modeling Lab	III Sem ME	ES
6.	Manufacturing Process Lab	III Sem ME	РС
7.	Fluid Mechanics & Hydraulic Machines Lab	III Sem ME	РС
8.	Thermal Engineering	IV Sem ME	РС
9.	Kinematics of Machinery	IV Sem ME	РС
10.	Mechanics of Solids	IV Sem ME	PC
11.	Metal Forming Processes	IV Sem ME	PC
12.	Thermal Engineering Lab	IV Sem ME	PC
13.	Mechanics of Solids Lab	IV Sem ME	PC
14.	Computer Aided Machine Drawing	IV Sem ME	PC

		NARAY	ANA EN	GINEERING CO	OLLEGE:	GUDUR		
		F	ENGINE	ERING MECHA	NICS			R2021
Semester	Hou	ırs / Week		Total hrs	Credit		Max	
	T	T	D		0	OIE	Marks	TOTAL
TTT	L 2	T1	P 0	40	C 3	CIE	SEE	TOTAL
III	2	1	0	48	3	40	60	100
			С	OURSE CONTE	INT			
Ν	IODULE	2 – 1		System of F	orces	1	10 H	
Composition and	resolution	n of forces	s, parallel	ogram law, princip	ole of transr	nissibilit	y, types of for	ce systems
- concurrent and	concurrer	it coplana	r forces, i	resultant of coplan	ar force sys	tems cou	uple, moment	of a force
Varignon's theore	em, conce	pt of free	body diag	grams, concept of	equilibrium	of copla	nar force syst	tems.
MOD	ULE -2			Friction			9 H	
		ts applicat	ions, angl	e of friction, angle	of repose, of			Types of
				application of fric	-			• •
planes.		,	1	11				
MOD	ULE-3		Α	nalysis of Trusses	8	0	9 H	
Introduction to pl	ane trusse	es, analysis	s of plane	trusses by method	of Joints, m	nethod of	sections & ter	nsion
coefficient metho	d.							
MOD	ULE-4		(	Centroid & Mome Inertia	ent of	10	)H	
Definition of Cer	ntroid &	Centre of	Gravity,	Axes of Symmetry	y, Location	of Cent	roid of Recta	ngle, Triangle
Semicircle, Quad	rant and	sector of	a circle	by method of in	tegration. N	Numerica	l problems o	on Centroid o
Composite section	ns.							
Concept of Mom	ent of in	ertia, perp	endicular	axis theorem, pa	rallel axis t	heorem,	and moment	of inertia of
•			-	of a circle Triang	gular section	ns by me	thod of integ	ration.
Numerical Proble	ms on mo	ment of in	nertia of c	omposite section.				
	MODUL	E-5		Kinematics & Ki	netics		10 H	
Rectilinear and C	urvilinea	motion, V	Velocity, A	Acceleration, Moti	on of a proje	ectile, Re	lative motion.	
Kinetics of rectili	near moti	on, Newto	on's laws o	of motion, D'Alen	nbert's prin	ciple, Wo	ork-energy me	ethod,
Impulse-momentu	ım equati	on, Kineti	ics of circ	cular motion, Rota	tion.			
							Total ho	urs: 48 h
4								

1. S S.Bhavikatti, "Engineering Mechanics", 4th edition, New Age International,2008.

2. R.K. Bansal, "A text book of Engineering Mechanics", LaxmiPublications, 2010

3. Irving Shames, GKM Rao, "Engineering Mechanics: Statics and Dynamics", 4thedition,Pearson,2009.

- 1. BasudebBhattacharya., "EngineeringMechanics", 2ndedition, OxfordUniversityPress (India), 2015.
- 2. K L Kumar, Veenu Kumar, "Engineering Mechanics", 4th edition, Tata McGrawHill,2010.
- 3. Engineering Mechanics, R.S.Khurmi, S.Chand, 2012.
- 4. Engineering Mechanics Statics and Dynamics by Ferdinand Singer, 2011

NARAYANA ENGINEERING COLLEGE:GUDUR											
	THERMODYNAMICS							R2021			
Semester		Hours /	Week	Total	Credits		Max Marks	5			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
III	3	0	0	48	3	40	60	100			

	COURSE CONTENT						
MODULE – 1	FUNDAMENTAL CONCEPTS		09 Hours				
Fundamental Concepts and	I Definitions: Microscopic and Macroscopic approach	es, Concept	of continuum and				
control volume, Systems of	Thermodynamics, State, Property, Process, Homogene	eous and Hete	erogeneous systems				
Thermodynamic equilibrium,	Quasi - static Process, Zeroth Law of Thermodynamics	, Temperature	Measurement .				
	Thermodynamic Definition of Work and Heat, Diffe	erent forms of	f Work and Work				
transfer and Heat and Heat Tr	ransfer, Path Function and Point Function.						
MODULE -2	FIRST LAW OF THERMODYNAMICS	10	Hours				
First Law of Thermodynami	ics: First law applied to a closed system undergoing a cyc	lic process an	d a change of				
state, Concept of Energy and i	ts forms - Internal Energy and Enthalpy, Perpetual Motic	on Machine of	First Kin				
(PMM1), First Law Limitatio	ns.						
Systems of flow : First law ap	pplied to a control volume, Steady flow process and its	mass and ene	rgy balance,				
Steady flow energy equation of	on unit mass and time basis, Application of SFEE for devi	ces like boiler,	turbine,				
compressor, heat exchanger,	nozzle, diffuser and throttling device.						
MODULE-3	SECOND LAW OF THERMODYNAMICS	10	Hours				
Second Law of Thermodyna	amics: Definition of a heat engine and energy reservoir,	thermal efficie	ency of heat				
engine, Refrigerator and heat	pump and their coefficient of performances, Kelvin-Planck	and Clausius	Statements of the				
Second Law and their equivale	Second Law and their equivalence, Carnot Cycle and Reversible Heat Engine, Carnot theorems and corollaries						
Absolute Thermodynamic Ter	nperature Scale, PMMI and PMM II, Reversible proce	ess, Irreversibl	e process, Causes				
of Irreversibility,							
Entropy : Concept of Entrop	by, Clausius theorem, Clausius inequality, Entropy cha	anges in an ir	reversible and				
reversible process, Principle	of increase of entropy with its application, Absolute entropy	opy.					
MODULE-4	PURE SUBSTANCES		09 Hours				
PURE SUBSTANCE: Beha	vior of pure substance (steam) explained through T-v,	P-T, P-v, P-h	n & T-s diagrams				
Triple point and critical po	pint, Quality or Dryness Fraction, Wetness Fraction,	Steam Table	es, Mollier Char				
Measurement of dryness fra	ction using throttling and separating- throttling calorim	eters and also	from steam tables				
Steam processes; expressions	s for the change in internal energy, enthalpy, work, hear	t, entropy in v	various				
Processes.							
MODULE – 5	IDEAL GASES AND GAS POWER CYCLES		10 Hours				
Ideal Gas and Real Gas: Ide	al gas, relation among the specific heats, internal energy	, enthalpy. Ar	nalysis o				
	, isentropic, isenthalpic processes, representation of the ab						
planes. Determination of work, heat, entropy and enthalpy changes during the above processes, problems							
Characteristic gas equations of a real gas, law of corresponding states, compressibility factor, problems.							
	ENERGY CONVERSION CYCLES:	1 6 .	<i>.</i>				
	ns, Overview of reciprocating engines, Air standard cyc tion for efficiency and Mean effective pressure (MEP) a		cating engines				
	and for effective pressure (WEF) ?						
		Total hours:	48 hours				

- 1. P.K.Nag, Engineering Thermodynamics, TMH, New Delhi,2013
- 2. G.J.Vanwylen and R.E.Sonntag, Fundamentals of Classical Thermodynamics, Wiley Eastern, NewDelhi,2008.
- **3.** Yonus A Cengel and Michael A Boles, Thermodynamics: An Engineering Approach, McGraw Hill, 2002.
- 4. Principles of engineering thermodynamics by morani 8THedition, SI version.

- 1. Thermal engineering by R.K Rajput 6thedition.
- **2.** R. K. Rajput (2010), A text book of Engineering Thermodynamics, Fourth Edition, Laxmi Publications, New Delhi, India.
- 3. Engineering thermodynamics by RK Rajput,5TH edition, Laxmi Publications, New Delhi, India.
- **4.** Engineering thermodynamics, work and heat transfer by Gordon rogers 4TH edition, person educationindia2002.

			NARA	YANA EN	GINEERINC	G COLLEG	E::GUDUR	
			MA	NUFACTU	JRING PRO	CESSES		R2021
Semester	Н	ours / Wee	k	Total	Credits	Max	x Marks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
III	3	0	0	48	3	40	60	100
				COURSE	CONTENT			1
MODUI	LE – 1	(	CASTING	PROCES	SES			10 h
Introduction								
<b>Casting Proc</b>	esses: Intro sting; patter ng system;	oduction to n: types, m	casting pro aterials and	ocess, proc l allowance	ess steps; Sa ; Cores: Type	es of cores		- Types of Molding principles and
MODUL		SPECIAL				5		9h
						rs and annli	cations of Shel	
investment ca					ies, paramete	is and appli	cations of She	neusting,
	0	6	U	0	iderations D	esign of fee	ding systems i	e sprije
runner, gate a				•		•	ung systems i	.e., sprue,
e		e		e			ing processes	
MODU					SES - WELL		ing processes	10h
							ad joints and	V-I characteristic
			01	• 1			6	
-	-			-		-	-	nd Plasma (Air ar
	•	-	0	er welding	, application	s, advantag	es and disadv	antages of the above
processes, oth		-						
Heat affected	zones in w	elding; Arc	Welding	defects: cau	uses and reme	edies.		
MODU	LE-4		GAS WE	LDING				10h
Gas Welding	: – Flame (	Characterist	ics-Equipm	ent. fluxes	and filler ro	ds-Ultrason	ic Welding –	Friction
U							cussion Weldi	
Brazing:- Fille	-	-			-	-		
TIG& MIG v		withing -	Soldering	reeninque	<i>s</i> , <i>iypes</i> of <i>c</i>	Joiders and	T TUXES	
,110& 1110	verunig							
	brazing an	d adhesive	bonding : T	Types and t			-	s, non-ferrous meta causes and remedies
MODU	ILE-5		SURF		INEERING ERMETALL			9 h
				1			cs and applica	
-	-		-				on of surfaces.	
Classification	of ceramic	materials, o	ceramic pov	wder prepa	ration; Proces	ssing of cera	amic parts:Pres	sing, casting,
sintering; Sec	ondary pro	cessing of	ceramics: (	Coatings, fi	nishing.			
Powder Meta	llurgy: Pr	inciple, mai	nufacture o	of powders,	steps involve	ed.		
							Total hours	48 hours
								_
Text Book(s): 1. Rao F		facturing T	Technology	–Volume I	", 5thedition,	McGraw-H	Hill Education	, 2018.
	k Jains and on,2018	l SchmidS.I	R.,"Manufa	cturing Eng	gineering and	Technology	7",7 th edition,	

- 3. Production Technology by R.K. Jain and S.C. Gupta, Khanna Publishers, 17th edition, 2012
- 4. Ian Gibson, Davin Rosen, Brent Stucker "Additive Manufacturing Technologies, Springer, 2ndEd,2014.
- 5. Welding and Welding Technology, Richard Little McGraw Hill Education, 2017
- 6. Manufacturing Science by Amitabh Ghosh ,east-west press pvt. Ltd. Second Edition

- 1. Manufacturing Technology, R.K. Rajput, Laxmi Publications
- 2. Production Technology by R.K.Jainand S.C.Gupta, KhannaPublishers, 17 th qedition, 2012
- 3. Production Technology, K.L Narayana, I.K. International Pub, 3rdEdition,2013
- 4. Manufacturing Process Vol. I, H.S.ShahPearson, 2013,
- 5. Principles of Metal Castings, Rosenthal, Tata Mc Graw Hill ,2ndEdition,2001
- 6. Workshop Technology-B.S.RaghuVamshi-Vol I.

	NARAYANA ENGINEERING COLLEGE:GUDUR										
		Fluid Mechanics and Hydraulic Machines R2021									
Semester		Hrs / W	/eek	Total	Credits		Max Mar	:ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
III	3	0	0	48	3	40	60	100			

#### **COURSE CONTENT**

	MODULE – 1	PROPERTIES OF FLUIDS	10 Hrs
--	------------	----------------------	--------

Definition of fluid, Dimensions and units, physical properties of fluids-density. specific weight, specific gravity, surface tension-vapor pressure and their influence on fluid motion-Newton's Law Of Viscosity,

**Fluid Statics**-Atmospheric, Gauge and Vacuum pressure–measurement of pressure–Piezometer, manometers simple, U-tube manometers, U-tube differential manometers.

**Fluid Kinematics** : stream line, path line and streak lines and steam tube, classification of flows- steady & unsteady, uniform, non-uniform, laminar, turbulent, rotational and irrotational flows-equation of continuity for one dimensional flow.

MODULE -2	FLUID DYNAMICS	9 Hrs

**Fluid Dynamics**: surface and body forces – Euler's and Bernoulli's equations for flowing stream line, momentum equation and its application on force on pipe bend

**Flow Through Pipes**: Reynolds's Number, Darcy Weisbach equation–Minor losses in pipes–pipes in series and pipes in parallel. Measurement of flow: Pitot Tube, Venturi Meter - horizontal position only and Orifice Meter.

MODULE-3 IMPACT OF JET ON VANES	10 Hrs
---------------------------------	--------

**Dimensional Analysis**- dimensional homogeneity- methods of dimensional analysis-Rayleigh's method-Buckingham theorem.

**Impact Of Jet : I**ntroduction to Hydrodynamic Thrust of jet on fixed and moving surfaces (flat and curved), series of flat vanes and series of radial curved vanes -velocity diagrams, work done and efficiency

MODULE-4	HYDRAULIC TURBINES	10 Hrs						
Classification of turbines, Impulse and Reaction turbines, Pelton wheel, Francis turbine and Kaplan turbine-								
working proportions, work done, and efficiency.	efficiencies( theory & derivations), hydraul	ic design-draft tube-theory- functions						
MODULE-5	CENTRIFUGAL PUMPS	9 Hrs						
Introduction, Classification -components and w	orking of centr ifugal pumps, - work done – manom e	I tric head, losses, efficiencies-						

specific speed-pumps in series and parallel-performance characteristic curves and NPSH.

Total Hrs:	48 Hrs

1. Hydraulic and Fluid Mechanics including Hydraulic Machines by Modi &Seth, Standard book house

2. A Text of Fluid Mechanics and Hydraulic Machines by Dr.R.K.Bansal – Laxmi Publications (P) Ltd., NewDelhi,2019.

3.Dr D S Kumar, "Fluid Mechanics and Fluid Power Engineering" S K Katariua&Sons,2014.

#### **Reference Book(s):**

1. Fluid mechanics and fluid machines by Rajput, S.Chand & Co.

2. Mechanics of Fluids by Potter, Wiggert, Ramadan, M.M.M.SARCAR, Cengage Publishers.

3. Principles of Fluid Mechanics and Fluid Machines by M.Narayana Pillai, Universities Press.

		NARAY	ANA ENG	INEERING	G COLLEC	GE:GUDU	R			
	COMPUTER AIDED DRAFTING AND R2021 MODELLING LAB									
Semester	I	Hours / Wee	ek	Total	Credit		Max Mar	`ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
III	0	0	3	48	1.5	40	60	100		

COURSE CONTENT	
Task -1 Introduction to AutoCAD commands	
Study capabilities of software for Drafting and Modeling – Coordinate systems (absolute,	
elative, polar, etc.) – Creation of simple figures like polygon and general multi-line figures.	
Task -2	
. Draw Title Block with necessary text and projection symbol	
Task -3	
Draw the methods of Dimensioning	
TASK-4	
Draw front view and top view of pentagon & hexagon by using 2D modeling	
TASK-5	
Draw front view and top view of simple solids like prism, pyramid, cylinder, cone by using 2D modeling	
TASK-6	
Draw front view, top view and side view of objects from the given pictorial views (eg. V-block, steppedblock, pulley, Simple stool,).	,
TASK-7	
Draw sectional views of prism, pyramid, , etc,	
TASK-8	
Draw isometric projection of simple objects. cylinder, cone and sphere	
TASK-9	
Creation of 3-D models of simple objects like journal bearing and spiral steps	
TASK-10	
Draw a layout of Engineering workshop.	

1. Ibrahim Zeid, "CAD / CAM - Theory and Practice 2E", Tata Mcgraw-Hill, NewDelhi,2010.

2. P. Radhakrishnan, S. Subramanyan, V. Raju "CAD/CAM/CIM", New Age International, 2015.

3. M.M.M. Sarcar, K. Mallikarjuna Rao, K. Lalit Narayan "computer aided design and manufacturing", prentice hall of India,2008.

- 1. Mikell.P.Groover, "CAD/CAM: Computer-Aided Design and Manufacturing", Prenticehall of India Pvt. Ltd.,NewDelhi.2008
- 2. Chriss McMahon and Jimmie Browne, "CAD/CAM", Addision Wesley, New York, 2000.
- 3. Tien-chienchang, Richard A wysk, Hsu-pin wang, "Computer-Aided Manufacturing", PearsonEdition,2009.

	NARAYANA ENGINEERING COLLEGE::GUDUR										
	Manufacturing process Lab R2021										
Semester	H	Hours / Wee	k	Total	Credit	Max	. Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
III	0	0	3	48	1.5	40	60	100			

	COURSE CONTENT
	Task 1
	Pattern Design and making on lathe machine
	Task 2
	Sand Properties Testing - Exercise for Strength and Permeability
	Task -3
	Gating Design and pouring time and solidification time calculations
	TASK -4
	Molding, Melting and Casting for ferrous/ non ferrous materials
	TASK -5
	Arc Welding: Lap & Butt Joint of M.S. plates -5mm
	TASK-6
	Brazing on copper pipes- 6mm pipe
	TASK -7
	Spot Welding on M.S PLATE- 2mm size
	TASK -8
	Tig Welding : Lap & Butt Joint of M.S. plates -5mm
	TASK -9
Hydraulic	Press: Deep drawing Press Tool: Blanking and Piercing operation with Simple dies
	TASK -10
	Additive manufacturing-3D printing
	ADDITIONAL EXPERIMENTS
	TASK-11
	Design the mould for making chalk pieces
	TASK-12
	Design the small components by using 3D Printing
<b>Fext Book(s):</b>	
	J. Chapman, Workshop Technology Part I, ELBS & Edward Arnold Publishers.
	an. N., Machine Tool Design Vol. 1 to 4, MIR Publication.
3 HMT, I	Production Technology, Tata McGraw Hill.

3 HMT, Production Technology, Tata McGraw Hill.

**Reference Book(s):** 1 .Hajra Choudary, Elements of workshop technology, Vol I & II, Media Publishers,

2 .Malkin Stephen, Grinding Technology: Theory and Applications of Machining with Abrasives, Industrial press, 2008

3 .PoulDeGarmo, J.T.Black, R.A.Kosher, Materials Processes and in Manufacturing, Prentice Hall of India Pvt.Ltd.,1997.

		NARAYAN	NA ENGINI	EERING CO	LLEGE:G	UDUR				
	Fluid Mechanics and Hydraulic Machines Lab R2021									
Semester	Ho	urs / Week		Total	Credits	Ν	lax Marl	KS		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
III	0	0	3	48	1.5	40	60	100		

COURSE CONTENT
Task 1 – Calibration of Venturi Meter
Calibrate the coefficient of Discharge of a Venturi Meter.
Task -2 Calibration of Orifice Meter
Calibrate the coefficient of Discharge of an Orifice Meter.
TASK-3 External Mouth Piece
Calibrate the coefficient of Discharge of external mouth piece.
TASK-4 Rectangular Notch
Calibrate the coefficient of Discharge of Rectangular Notch.
TASK-5 Minor Losses
Find the loss of head due to sudden contraction.
TASK-6 Major Losses
Find the friction factor of pipes having different diameters and same material.
TASK-7 Verification of Bernoulli's Theorem.
Prove that the total energy remains constant by using Bernoulli's tube withdifferent
cross section.
TASK -8 Impact of jet on vanes
Measure the co efficient of impact of jet on flat and curved vanes.
TASK-9 Pelton wheel turbine
Conduct performance test on Pelton Wheel and find it's efficiency.
TASK-10 Single stage centrifugal pump.
Calculate the efficiency of a single stage centrifugal pump with constant speed.
ADDITIONAL EXPERIMENTS
TASK-11 Multi stage centrifugal pump.
Calculate the efficiency of a Multi stage centrifugal pump with constant speed.
TASK-12 Reciprocating pump.

#### Calculate the efficiency of a Reciprocating pump with constant speed.

#### VirtualLabs:

1<u>http://eerc03-iiith.vlabs.ac.in/</u> 2.<u>http://fmc-nitk.vlabs.ac.in/fluid-machinery/</u>

#### Text Book(s):

1. Hydraulic and Fluid Mechanics including Hydraulic Machines by Modi &Seth, Standard book house

A Text of Fluid Mechanics and Hydraulic Machines by Dr.R.K.Bansal – Laxmi Publications (P) Ltd.,New Delhi.

#### **Reference Book(s):**

1. Fluid mechanics and fluid machines by Rajput, S.Chand & Co.

2. Mechanics of Fluids by Potter, Wiggert, Ramadan, M.M.M.SARCAR, Cengage Publishers.

3. Principles of Fluid Mechanics and Fluid Machines by M.Narayana Pillai, Universities Press.

	NARAYANA ENGINEERING COLLEGE:GUDUR									
	THERMAL ENGINEERING R2021									
Semester		Hours /	Week	Total	Credits		Max	Marks		
	L	Т	Р	hrs	C	CIE	SEE	TOTAL		
IV	3	0	0	48	3	40	60	100		

	COURSE CONTENT	
MODULE – 1	INTRODUCTION TO IC ENGINES	09 Hours
IC ENGINES: Classificatio	n, Various parts and their uses, Materials of par	ts, Working
principles of two stroke and f	our stroke engines and SI and CI engines, Valve and Por	rt Timing Diagrams,
Scavenging of IC Engines.		
MODULE -2	VARIOUS SYSTEMS OF IC ENGINES	10 Hours
	(IN SI ENGINES) : Line diagram of fuel supply, Fue ael filters, Simple Carburettor – its working princip	
	<b>SI ENGINES) :</b> Methods – Air cooling, water cooling yphon system and Pump Circulation system, Radiator and i freeze solutions.	
LUBRICATION SYSTEM Oil pumps – Gear pump and IGNITION SYSTEM (IN	(IN SI ENGINES) : Dry sump and Wet sump syste d Plunger pump, Oil filters – Bypass system and Full flow SI ENGINES) : Requirements of ignition system, T ronic Ignition, Working principles of all the ignition system	w system. Sypes – Battery Ignition
MODULE -3	COMBUSTION IN IC ENGINES	10 Hours
combustion, Importance of ignition and knocking (exp chamber – requirements, typ <b>COMBUSTION IN CI EN</b>	NGINES: Four stages of combustion, Delay period and lock, Need for air movement, open and divided combusti	bnormal combustion, pre ock additives, combustio its importance, Effect of
MODULE-4	TESTING AND PERFORMANCE OF IC	09 Hours
	ENGINES	
cylinder pressure, fuel con-	<b>RMANCE OF IC ENGINES</b> : Parameters of performance test, Heat balance sheet.	
incuonal losses and indicad	bu power, i errormanee test, fleat balance sheet.	
MODULE-5	COMPRESSORS	10 Hours
MODULE-5RECIPROCATINGCOreciprocating compressors,multistage compression, undCENTRIFUGALCOMPR	COMPRESSORS MPRESSORS: Classification of compressors, Pr work required, Isothermal efficiency volumetric efficiency er cooling, saving of work, minimum work condition for m ESSORS: Mechanical details, principle of operation, v ape-losses, slip factor, power input factor, pressure coef	inciple of operation o y and effect of clearance ulti-stagecompression. elocity and pressure

- 1. R.S. Khurmi and J.K. Gupta, A Textbook of Thermal Engineering, (2011), 3rd Edition, S. Chand & Company Ltd., New Delhi
- 2. R. K. Rajput (2011), Thermal Engineering, 18th edition, Lakshmi Publications, New Delhi, India.
- 3. Dr. Kirpal Singh, Automobile Engineering (Volume II), 6th Edition, Standard Publisher, New Delhi.
- 4. V. Ganesan (2011), I.C. Engines, 3rd edition, Tata McGraw-Hill, New Delhi, India.

- **1.** Mathur, Sharma (2008), IC Engines, 3rd edition, Dhanpat Rai & Sons, New Delhi,India.
- **2.** B.JohnHeywood (2011), internalcombustionenginefundamentals,2ndedition, TataMcGraw-Hill, NewDelhi.
- **3.** Pulkrabek (2008), Engineering fundamentals of IC Engines, 2nd edition, Pearson Education.

1			NARAYA	NA ENGI	NEERING	COLLE	GE:GUDU	J <b>R</b>	
		KI	NEMATIC	CS OF MA	CHINERY	7		R2021	
Semester			/ Week	Total	Credits		Мах	Marks	
Semester	L	L T P hrs C CIE						TOTA	L
IV	3	0	0	48	3	40	SEE 60	100	
				COURSE	CONTEN	Т			
MOD	DULE – 1			Introdu	ction			10 Hrs	
derivation), l	kinematic ains and in	chain, nversion	mechanis s. Inversio	om, structu	re, mobili bar chain,	ity of m single slid	echanism,	's criterion (with inversion, mach hain and double sh	ne,
MOD	ULE -2		Mechani	sms with L	owerPairs			9 Hrs	
mechanisms - Steering Mec	– Geneva hanism: C	mechani	sm and rat	chetand pav	vl mechani	sm, pantog	graph.	, intermittent motion	
Hooke's Joint	t.								
MODU	JLE-3		-	Acceleration			nechanism	10 Hrs	
MODU Determination method (grap	J <b>LE-3</b> n of veloc bhical) – ( To determ center m	city and Coriolis ine line ethod.	acceleratio componen ar velocit	on of a po t of accele y and angu	vint/link in ration. Inst ular veloci	simple 1 antaneous ity of lir	centre – ( iks of si	<b>10 Hrs</b> s by relative vel Centrodes – Kenn mple mechanisms	edy'
MODU Determination method (grap theorem – T instantaneous	JLE-3 n of veloc bhical) – G To determ center m truction fo	city and Coriolis ine line ethod.	acceleration component car velocity ty and acce	on of a po t of accele y and angu	oint/link in ration. Inst ular veloc: slider cran	simple 1 antaneous ity of lir	centre – ( iks of si	s by relative vel Centrodes – Kenn	edy'
MODU Determination method (grap theorem – T instantaneous Klein's Const MODU	JLE-3 n of veloc bhical) – ( To determ center m truction fo JLE-4	city and Coriolis ine line ethod. or veloci	acceleration component ear velocity ty and acce Gea	on of a po it of accele y and angu eleration of ars & Gear	oint/link in ration. Inst ular veloci slider cran <b>Trains</b>	simple n antaneous ity of lin k mechanis	centre – ( hks of si sm.	s by relative vel Centrodes – Kenn mple mechanisms <b>10 Hrs</b>	edy [:] b
MODU Determination method (grap theorem – T instantaneous Klein's Const MODU Classification	JLE-3 n of veloc ohical) – 0 To determ center m truction fo JLE-4	city and Coriolis ine line ethod. or veloci	acceleration component ear velocity ty and acce Ges	on of a po t of accele y and angu eleration of <b>ars &amp; Gean</b> gy –Law o	oint/link in ration. Inst ular veloc: slider cran <b>Trains</b> f gearing –	simple 1 antaneous ity of lir k mechanis	centre – 0 hks of si sm. of sliding	s by relative vel Centrodes – Kenn mple mechanisms <b>10 Hrs</b> – Length of pat	edy' b
MODU Determination method (grap theorem – T instantaneous Klein's Const MODU Classification contact, Arc o	JLE-3 n of veloc bhical) – ( To determ center m truction fo JLE-4 n of Gears of contact -	city and Coriolis ine line ethod. or veloci	acceleration component ear velocity ty and acce Generational tratio – Int	on of a po t of accele y and angu- eleration of ars & Gear gy –Law o erference in	oint/link in ration. Inst ular veloc: slider cran <b>Trains</b> f gearing – i Involute g	simple n antaneous ity of lin k mechanis -Velocity o gears, Meth	centre – ( hks of si sm. of sliding ods of avo	s by relative vel Centrodes – Kenn mple mechanisms <b>10 Hrs</b> – Length of pat iding interference	edy' b
MODU Determination method (grap theorem – T instantaneous Klein's Const MODU Classification contact, Arc o – Minimum r	JLE-3 n of veloc ohical) – 0 To determ center m truction fo JLE-4 n of Gears of contact - number of	city and Coriolis ine line ethod. or veloci or veloci	acceleratio component ear velocity ty and acce Get tratio – Int avoid inte	on of a po t of accele y and angu eleration of <b>ars &amp; Gear</b> gy –Law o erference in erference of	vint/link in ration. Inst ular veloci slider cran <b>Trains</b> f gearing – i Involute g n pinion r	simple 1 antaneous ity of lin k mechanis -Velocity o gears, Meth neshing w	centre – ( hks of si sm. of sliding ods of avor ith gear a	s by relative vel Centrodes – Kenn mple mechanisms <b>10 Hrs</b> – Length of pat	edy' b
MODU Determination method (grap theorem – T instantaneous Klein's Const MODU Classification contact, Arc o – Minimum r	JLE-3 n of veloc ohical) – 0 To determ center m truction fo JLE-4 n of Gears of contact - number of Characteris	city and Coriolis ine line ethod. or veloci or veloci	acceleratio component ear velocity ty and acce Get tratio – Int avoid inte	on of a po t of accele y and angu eleration of <b>ars &amp; Gear</b> gy –Law o erference in erference of	vint/link in ration. Inst ular veloci slider cran <b>Trains</b> f gearing – i Involute g n pinion r	simple 1 antaneous ity of lin k mechanis -Velocity o gears, Meth neshing w	centre – ( hks of si sm. of sliding ods of avor ith gear a	s by relative vel Centrodes – Kenn mple mechanisms <b>10 Hrs</b> – Length of pat iding interference nd on pinion mes	edy b
MODU Determination method (grap theorem – T instantaneous Klein's Const MODU Classification contact, Arc o – Minimum r with rack. C Numerical pr Velocity ratio Algebraic/Tał	JLE-3 n of veloc phical) – 0 To determ center m truction fo JLE-4 n of Gears of contact - number of Characteris roblems. o & Train v	city and Coriolis ine line ethod. or veloci - Contac - Contac - teeth to tics of value, Ty	acceleratio component ear velocity ty and acce Gea tratio – Int avoid inte involutes ypes of gea	on of a po t of accele y and angu- eleration of <b>ars &amp; Gean</b> gy –Law o erference in erference of action, Con r trains– Sin	vint/link in ration. Inst ular veloci slider cran <b>Trains</b> f gearing – a Involute g n pinion r mparison o mple, Comp	simple r antaneous ity of lir k mechanis -Velocity o gears, Meth neshing w f Involute	centre – ( hks of si sm. of sliding ods of avoi ith gear a and Cy erted & Ep	s by relative vel Centrodes – Kenn mple mechanisms <b>10 Hrs</b> – Length of pat iding interference nd on pinion mes	h n c
MODU Determination method (grap theorem – T instantaneous Klein's Const MODU Classification contact, Arc o – Minimum r with rack. C Numerical pr Velocity ratio Algebraic/Tal automobile	JLE-3 n of veloc phical) – 0 To determ center m truction fo JLE-4 n of Gears of contact – number of Characteris roblems. o & Train v bular meth	city and Coriolis ine line ethod. or veloci - Contac - Contac - teeth to tics of value, Ty	acceleratio component ear velocity ty and acce Gea tratio – Int avoid inte involutes ypes of gea	on of a po t of accele y and angu- eleration of <b>ars &amp; Gear</b> gy –Law o erference in erference of action, Con r trains– Sin n value of	oint/link in ration. Inst ular veloci slider cran <b>Trains</b> f gearing – n Involute g n pinion r mparison o mple, Comp Epicyclic g	simple r antaneous ity of lir k mechanis -Velocity o gears, Meth neshing w f Involute	centre – ( hks of si sm. of sliding ods of avoi ith gear a and Cy erted & Ep	s by relative vel Centrodes – Kenn mple mechanisms <b>10 Hrs</b> – Length of pat iding interference nd on pinion mes cloidal teeth pro bicyclic gear trains. r Differential of a	edy' b h c hin;
MODU Determination method (grap theorem – T instantaneous Klein's Const MODU Classification contact, Arc o – Minimum r with rack. C Numerical pr Velocity ratio Algebraic/Tał	JLE-3 n of veloc phical) – 0 To determ center m truction fo JLE-4 n of Gears of contact – number of Characteris roblems. o & Train v bular meth	city and Coriolis ine line ethod. or veloci - Contac - Contac - teeth to tics of value, Ty	acceleratio component ear velocity ty and acce Gea tratio – Int avoid inte involutes ypes of gea	on of a po t of accele y and angu- eleration of <b>ars &amp; Gear</b> gy –Law o erference in erference of action, Con r trains– Sin n value of	vint/link in ration. Inst ular veloci slider cran <b>Trains</b> f gearing – a Involute g n pinion r mparison o mple, Comp	simple r antaneous ity of lir k mechanis -Velocity o gears, Meth neshing w f Involute	centre – ( hks of si sm. of sliding ods of avoi ith gear a and Cy erted & Ep	s by relative vel Centrodes – Kenn mple mechanisms <b>10 Hrs</b> – Length of pat iding interference nd on pinion mes cloidal teeth pro picyclic gear trains.	edy b
MODU Determination method (grap theorem – T instantaneous Klein's Conse MODU Classification contact, Arc o – Minimum r with rack. C Numerical pr Velocity ratio Algebraic/Tal automobile Types of carr disc cam with	JLE-3 n of veloc phical) – 0 To determ center m truction for JLE-4 n of Gears of Contact – number of Characteris roblems. o & Train v bular meth ULE-5 ms, types th recipro ller follow	city and Coriolis ine line ethod. or veloci - Gear - Contac - Contac - Contac - Contac - Contac - Contac - Contac - Contac - Gear - Contac - Gear - Contac - Contac - Gear - Contac - C	acceleration component ear velocity ty and acce Gea terminolo tratio – Into avoid inte involutes ypes of gea nding Trai	on of a po t of accele y and angu- eleration of <b>ars &amp; Gean</b> gy –Law o erference in erference on action, Con r trains– Sin n value of 1 <b>CA</b> lacement, v aving knife-	oint/link in ration. Inst ular veloc: slider cran <b>Trains</b> f gearing – a Involute g n pinion r mparison o mple, Comp Epicyclic g <b>AMS</b> elocity and edge, rolle	simple r antaneous ity of lir k mechanis -Velocity o gears, Meth neshing w f Involute bound, Rev ear trains, acceleration	centre – 0 hks of si sm. of sliding ods of avo ith gear a and Cy erted & Ep Bevel gea	s by relative vel Centrodes – Kenn mple mechanisms <b>10 Hrs</b> – Length of pat iding interference nd on pinion mes cloidal teeth pro bicyclic gear trains. r Differential of a	h chin hin iles

- 1. Thomas Bevan, Theory of Machines, CBS Publishers, 2009.
- 2. S.S. Rattan, Theory of Machines, Tata McGraw Hill Publishers, 3rd Edition, 2009.
- 3. Kinematics & Theory of Machines, Sadhu Singh, Pearson

#### **Reference Book(s):**

 J.E.Shigley, Theory of Machines, Tata McGraw Hill Publishers, New Delhi, 3rd Edition, 2005.
 C.S. Sharma and Kamlesh Purohit, Theory of Mechanisms and Machines, PHI Learning Pvt. Limited,2006

3. Amitabh Ghosh and A.K. Mallik, Theory of Machines, East West Publications, 3rd Edition, 2009.

	NARAYANA ENGINEERING COLLEGE:GUDUR									
	MECHANICS OF SOLIDS R2021									
		Hours /	Week	Total	Credits		Max	Marks		
Semester	L	Т	Р	hrs	L	Т	Р			
IV	2	1	0	48	3	40	60	100		

COURSE CONTENT								
MODULE – 1	08 hours							
Types of Stresses, St	rains, Hooke's law, Stress–Strain diagram for various materials, Work	ing Stress, Factor of						
• • • •	Poisson's ratio, Volumetric strain, relation between three elastic mode ars, Temperature stresses, Strain energy.	ule, Bars of Varyin						
MODULE -2	SHEAR FORCE AND BENDING MOMENT	10 hours						
hanging beams sul	orce and bending moment, S.F and B.M. diagrams for cantilever, Simplected to Point loads, Uniformly distributed loads, Uniformly loads, Point of contra flexure.							
MODULE-3	BENDING STRESS AND SHEAR STRESS	10 hours						
Triangular, I, T sect								
MODULE-4	TORSION AND DEFLECTION OF BEAMS	10 hours						
o strengths of solid a Relationship betwee	on, Torsion Equation, transmission of power in solid and hollow circular and hollow shafts, shafts in series and parallel, combined bending and tors on curvature, slope and deflection, Slope and deflection of cantilever an Double Integration method and Macaulay's method.	sion.						
MODULE-5	PRESSURE VESSELS AND COMPLEX STRESSES	10 hours						
Volumetric strain, T Complex Stresses - S	Irical shells, Derivation of formula for longitudinal and circumferential str hin spherical shells, Thick cylinders under internal and external pressure stresses on an inclined plane under different uniaxial and biaxial stress co principal stresses - Mohr's circle	e. onditions –						
	Total hour	rs: 48 hours						
	Text Book(s):							

1. F.P. Beer, E.R. Johnston, Jr&John.T. DeWolf, "Mechanics of Materials", 7th edition, TataMcGraw-Hill,2016.

2. SS Rattan, Strength of materials, 3rd edition, Tata McGraw-Hill,2016.

3. Strength of Materials by R.K. Bansal, Laxmi Publishers, 5thEdition,2012.

4. Mechanics of Materials, Andrews Pytel, J aan Kiusallaas & M.M.M.Sarcar (Second

Edition), Cengage Learning Publishers.

- 1. Timoshenko, "Strength of Materials Part-I&II", 3rd edition, CBS Publishers, 2004.
- 2. Popov, "Mechanics of Solids", 2nd edition, New Pearson Education, 2015
- 3. R.K.Rajput, Strength of materials, S.Chand Publications, Revised Edition, 2006.
- 4. Strength of Materials by M.Chakraborti, S.K.Kataria &Sons, 2ndEdition,2011.

NARAYANA ENGINEERING COLLEGE:GUDUR											
	METAL FORMING PROCESSES										
Semester	Hours / Week Total Credits Max hrs Marks										
	L	Т	Р	in 5	С	CIE	SEE	TOTAL			
IV	3	0	0	48	3	40	60	100			

	COURSE CONTENT						
MODULE – 1 INTRODUCTION TO METAL FORMING							
engineering stress and true str	al stress analysis, and three-dimensional stress analysis, the relation betwees, the relation between engineering strain and true strain, yield crite t working, cold working, strain hardening, recovery, recrystallization, and	ria, yield					
MODULE -2	ROLLING & FORGING	9Hrs					
Introduction to bulk and shee	t metal forming, Economics of bulk-forming						
ROLLING: principles and the	ory of rolling, Process description of Rolling. Forces in rolling and p	owe					
requirements, applications ar	d, limitations, defects in rolled products – Numerical problems on Roll	ing. FORGING					
PROCESSES: Principles of	forging – Process description of Forging -Types Forging – Smith forging	g, Drop Forging					
– Roll forging –: Rotary fo	rging – forging defects, Forces in forging of the strip, disc and power	r requirements					
applications							
MODULE-3	EXTRUSION PROCESSES	10Hrs					
EXTRUSION PROCESSES:	Basic extrusion process and its characteristics. Mechanics of hot and c	old extrusion -					
Forward extrusion and back	ward extrusion – Impact extrusion Hydrostatic extrusion, forces ir	extrusion of					
cylindrical and non-cylindrica	l components – characteristics and defects in extruded parts.						
	Mechanics and its characteristics, determination of the degree of	drawing,					
Drawing force, power, and n	umber of stages-defects in products, Numerical problems on drawing	C					
MODULE-4	WIRE DRAWING & SHEET METAL WORKING	9Hrs					
Sheet Metal Working - Ec	conomical Considerations - Stamping, forming, and other cold we	orking processe					
Blanking and piercing – Ben	ding and forming - Drawing and its types - Cup drawing and Tube drawing	wing – coining					
Hot and cold spinning. Force	and power requirements in sheet metal operations, defects in sheet meta	l products					
MODULE-5	PROCESSING OF PLASTICS	10Hrs					
Processing of plastics, injection	on and blow molding, calendaring, thermos forming, compression molding,	transfer					
molding, and joining of plast	ics.						
Rapid manufacturing: - Intro	duction – concepts of rapid manufacturing, information flow forrapid						
prototyping, classification of	the rapid prototyping process, stereolithographic process, fused						
deposition modeling, selectiv	e laser sintering						
	Total hours:						

- 1. Manufacturing Technology, Schmid and kalpak Jain, Pearson Education, 2016
- 2. Production Technology by R.K. Jain and S.C. Gupta, Khanna Publishers, 17th edition, 2012
- 3. Manufacturing technology Vol I by P.N. Rao, Tata McGraw Hill, 4th edition, 2013

#### **Reference Book(s):**

1. Manufacturing Technology, R.K. Rajput, Laxmi Pub

2. Rapid Prototyping Principles and Applications, Rafiq Noorani, WielyPub

	ľ	NARAYAN	A ENGINE	ERING CO	OLLEGE:G	UDUR		
		THERMA	L ENGINI	EERING LA	AB			R2021
Semester		Hours / W	eek	Total	Credits		Max	
				hrs		Marks		
	L	Т	Р		С	CIE	SE E	TOTAL
IV	0	0	3	48	1.5	40	60	100
		· · · ·	COURS	E CONTEN	T			
Performance test	on Spark Ignit		<b>Fask 1</b> and Compres	sion Ignition	n using the a	lternate fue	els.	
			Task-2					
Valve Timing Dia	agram of an 4 s	stroke diese	l engine .					
	<u> </u>		Task-3					
Port Timing Diag	ram of an 2-St	roke Petrol	engine.					
			TASK-4					
Performance Test	on a 4 -Stroke	Diesel Eng	vines					
	on u + buoke	Dieser Ling	TASK-5					
<b>D</b>								
Performance	Test on 2-Strol	ke Petrol er	-					
			TASK-6					
Evaluation of En	gine friction b	y conductin		on 4-Stroke	Multi cyline	derEngine.		
Retardation and n	notoring test of	n 1. stroke (	TASK-7					
Retartation and n	notoring test of	1 4- SUOKE	engine.					
			TASK-8					
Heat Balance of a	n I.C. Engine.							
			TASK-9					
/Fuel Ratio and V	olumetric Effic	ciency of ar	n I.C. Engine	S.				
			TASK-10					
Performance Test	on Variabla C	omprossion	Patio Engin	os for CIEn	ginas			
Terrormance Test		ompression		al Experime	-			
			TASK -11		*15			
Performance Test	on Reciprocati	ng Air – Co	ompressor U	nit.				
	1	<u> </u>	TASK -12					
Study of Boilers.								

1. Vasandani V.P. and Kumar, D.S., Treatise on Heat Engineering, Chand & Co Publishers, New Delhi,2011.

2. Ganesan, V., Gas Turbines 3rd Edition, Tata McGraw Hill Book Company, New Delhi, 2010.

3. Internal Combustion Engines / V. Ganesan- TMH, 4thEdition,2012

4. Thermal Engineering / Rajput / Lakshmi Publications, 9thEdition,2013

#### **Reference Book(s):**

1.I.C. Engines fundamentals, Heywood, McGraw-Hill, 1st Edition,2011

2. IC Engines – Mathur & Sharma – DhanpathRai&Sons,,2010

3. Engineering fundamentals of IC Engines - Pulkrabek, Pearson, PHI, 2ndEdition, 2009

4. Thermal Engineering, Rudra moorthy - TMH, 10thEdition,2010

		NARAYA	NA ENGI	NEERING	COLLEG	E:GUDUR	2	
		]	Mechanics	of Solids I	Lab			R2021
Semester		Hours / Wee					ks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	0	0	3	48	1.5	40	60	100
			COL	JRSE CON	TENT			
Study the stre	ss – strain 1	relations of		teel b) Cast on U.T.M	- · ·	) Tor Steel		ng tension test
				Task 2 Cor	-			
Study the stree	ss – strain r			teel b) Cast test on U.T		Tor Steel	be conductir	ıg
			Tas	sk -3 Comp	ressive and	Shear str	ength.	
Find the co	mpressive a	and shear st	rength of v	vood and she tests.	ear strength	of GI shee	t by conduct	ing relevant
			TAS	SK -4 Brinn	ell's and V	icker's ha	rdness.	
Find	1 the Brinne	ell's and Vio	cker's hard	lness numbe (d) Copper	. ,	eel (b) Bras	s (c) Alumin	ium
				TASK -	5 Modulus	of rigidity.		
Determine the	Modulus o	of rigidity (a	) Solid sha aluminium		w shaft mae	le of steel a	und	
		TA	SK-6 Con	pression a	nd Tensile	ests.		
Find the sprin	g index and			f the materi ensile tests.	al of a sprir	ig by condu	icting	
				TASK	-7 Deflect	ion test.		
Determine the	e Young's n			l by conduct tinuous bea	•	ion test on	a simply	
				TASK	-8 Deflect	ion test.		
Determine	the Young's	s modulus o		rial by cond er beam	lucting defle	ection test o	on propped	
			TASK	-9 Impact s	strength .			
	Find	mpact stren	gth of a gi	iven materia	al by conduc	cting a Char	rpy test	
				TASK	-10 Impact	strength.		
	Find	l impact stre	ength of a g	given mater	ial by cond	ucting a Izo	od test	

Additional Experiments:
-------------------------

## TASK -11 Deflection.

Determine the deflection in leaf spring with a single leaf and multiple leafs.

#### TASK -12 Bending Test

Determine the bending stress by conducting Bending test on 1. Mild steel 2. Wood

VirtualLabs http://sm-nitk.vlabs.ac.in/

1. F.P.Beer,E.R.Johnston,Jr&John.T.DeWolf, "Mechanics of Materials", 7thedition, TataMcGraw-Hill, 2016.

2. SS Rattan, Strength of materials, 3rd edition, Tata McGraw-Hill,2016.

3. Strength of Materials by R.K. Bansal , Laxmi Publishers, 5thEdition,2012.

4. Mechanics of Materials, Andrews Pytel, Jaan Kiusallaas & M.M.M.Sarcar (Second Edition), Cengage Learning Publishers.

#### **Reference Book(s):**

1. Timoshenko, "Strength of Materials Part-I& II", 3rd edition, CBS Publishers, 2004.

2. Popov, "Mechanics of Solids", 2nd edition, New Pearson Education, 2015

3. R.K.Rajput, Strength of materials, S.Chand Publications, Revised Edition, 2006.

4. Strength of Materials by M.Chakraborti, S.K.Kataria& Sons, 2ndEdition,2011.

NARAYANAENGINEERINGCOLLEGE:GUDUR										
	Computer Aided Machine Drawing Lab R2021									
Semester	H	Hours /Weel	K	Total	Credit	MaxMarks				
	L T P			hrs	С	CIE	SEE	TOTAL		
IV	0	1	2	48	2	40	60	100		

#### **COURSE CONTENT**

#### PART -A The following contents are to be done by any 2D software package

#### Task 1

- 1. Conventional representation of materials.
- 2. Conventional representation of machine components.

#### Task 2 Conventional representation

- 1. Conventional representation of dimensioning on the drawings.
- 2. Conventional representation sectional views.

#### Task -3 Detachable joints

Drawing of thread profiles, hexagonal and square-headed bolts and nuts, bolted joint with washer and locknut, stud joint, screw joint and foundation bolts.

#### PART B

#### The following contents are to be done by any 2D software package

#### TASK -4 Riveted joints

Drawing of rivet, lap joint, butt joint with single strap, single riveted , double riveted double strap joints.,

#### TASK -5 Welded joints

Lap joint and T joint with fillet, butt joint with conventions

#### TASK-6 Keys & Couplings

Taper key, sunk taper key, round key, saddle key, feather key, woodruff key. Shaft coupling, bushed pintype flange coupling, universal coupling, Oldhams' coupling

#### PART-C

The following contents are to be done by any 3D software package:

#### TASK -7 Assembly drawings

Lathe tool post, , tail stock, machine vice, gate valve

#### TASK -8 Assembly drawings

screw jack, plumber block, clamping device, Geneva cam, universal coupling, connecting rod, eccentric.

#### **Additional Experiments:**

#### **TASK -9 Manufacturing drawing**

Representation of limits, fits and tolerances for mating parts. Use any four parts of above assembly drawings and prepare manufacturing drawing with dimensional and geometric tolerances.

1.K.L. Narayana, P. Kannaiah, "A text book on Engineering Drawing", SciTech Publications, 2014

2. N.D.Bhatt, "Machine Drawing", Charotar, 50th edition, 2014.

3"Software tools/packages", Auto CAD, Solid works or equalent.

4. Machine Drawing With AutoCAD, GoutamPohit, GoutamGhosh, Pearson Publications

#### **Reference Book(s):**

1. CecilJensen, JayHelsel and Donald D.Voisinet, "Computer Aided Engineering Drawing",

TataMcGraw-Hill, NY,2000.

- 2. James Barclay, Brain Griffiths, "Engineering Drawing for Manufacture", Kogan PageScience, 2003.
- 3. K.L. Narayana, "Production Drawing", NewAge International Publishers, 3rdedition,2014

4.P I Varghese and K C John, Machine Drawing, VIP Publishers, 2011